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There exist methods for determining effective conservative interactions in coarse-grained particle-based
mesoscopic simulations. The resulting models can be used to capture thermal equilibrium behavior, but the
model system we study does not correctly represent transport properties. We suggest the use of force covari-
ance to determine the full functional form of dissipative and stochastic interactions. We show that a combina-
tion of the RDF and a force covariance function can be used to determine all interactions in dissipative particle
dynamics �DPD�. Furthermore, we use the method to test whether the effective interactions in DPD can be
adjusted to produce a force covariance consistent with the projection of a microscopic Lennard-Jones simula-
tion. The results indicate that the DPD ansatz may not be consistent with the underlying microscopic dynamics.
We discuss how this result relates to theoretical studies reported in the literature.
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I. INTRODUCTION

It is the long-standing aim of molecular simulations to
elucidate mechanisms that cannot be directly observed in
experiments or understood in terms of more abstract models.
Though extremely successful in many areas, when applied to
mesoscopic systems, such as membranes or complex fluids,
one often finds that the relevant time and length scales on
which important mechanisms take place are beyond the
reach of direct, detailed simulations. As a consequence, sev-
eral coarse-grained methods have been developed to allow
for a larger time span to be simulated. Lattice gases �1� cor-
respond to dividing the system into an array of subsystems,
each a thermodynamic system on its own with a local tem-
perature, pressure, particle density, and velocity distribution.
Other coarse-graining procedures have explicit particles with
pairwise interactions; well-known examples are united atoms
�2�, smoothed particle hydrodynamics �SPH� �3�, and dissi-
pative particle dynamics �DPD� �4�. There also exist hybrid
methods suitable, for example, in molecular simulations
where atomistic resolution is needed only in spatially local-
ized domains—e.g., �5,6�.

Atomic force fields for molecular dynamics �MD�, de-
rived from potentials defined empirically or theoretically
�e.g., from quantum-mechanical models�, are relatively ma-
ture. In contrast, it is much less clear how to choose the
effective force fields for coarse-grained models, partly be-
cause the connection between the degrees of freedom in the
coarse-grained dynamics and the underlying MD differs
from one coarse-graining procedure to the next. Frequently,
simple heuristic forces are used; partly because of computa-
tional ease, but also because the detailed forces may not be
known �7�. The magnitude of the forces are then chosen to
match the macroscopic observables of the system, such as
the compressibility. In �8� �see also references therein�, ef-
fective forces are calculated for particles interacting accord-
ing to the Lennard-Jones potential, which corresponds to the
average effect of the true forces during a time interval. Be-
cause the time-averaged force is effectively an average over
rapid fluctuations of close particles, the effective potentials
are much softer than the Lennard-Jones potential at small

distances. An alternative approach, which we will use later in
this paper, is to use the fact that for particle systems with
central forces there is a one-to-one relation between the ra-
dial distribution of particles at thermal equilibrium and the
pairwise potential �9�.

When coarse-graining a molecular system, the effective
interactions in the resulting system can either be determinis-
tic �smooth, due to averaging of fast degrees of freedom�, in
which case just matching the equilibrium properties of the
system gives the correct dynamics, or the fast degrees of
freedom act as a noisy driving force. Which of these two
scenarios best describe the system at hand depends on the
exchange of energy between the coarse-grained particles and
the degrees lost in the coarse-graining procedure. If a sub-
stantial amount of energy is exchanged, then the motion of
the coarse-grained particles will not be smooth or determin-
istic. In this case, it is not sufficient to capture the conserva-
tive forces, but we must also introduce dissipative and sto-
chastic forces. These forces are included in the SPH and
DPD models. The models are quite similar, and in this paper
we choose to focus on DPD. As mentioned in the previous
paragraph the smooth, or conservative, part of the interaction
can be determined from the RDF in thermal equilibrium �9�.
In other words, the radial distribution at equilibrium is not
affected by the noise term in the interaction �provided an
appropriate deterministic dissipative force is added, ensuring
the equilibrium temperature�. Clearly it follows that equilib-
rium properties that are determined by the radial distribution
are also not affected. Examples are compressibility and other
observables defining the equation of state. Other characteris-
tics such as the diffusion coefficient and the viscosity do
depend on the stochastic interactions. To capture these prop-
erties it is central to choose the stochastic interaction, includ-
ing its radial dependence, as correctly as possible.

To accurately describe the dissipative and stochastic part
of the dynamics we must introduce a new observable,
complementing the RDF. A candidate could be the autocor-
relation of the velocity, which is directly related to the sto-
chastic driving on a single particle as well as the diffusion
coefficient through Green-Kubo relations �10,11�. In a
particle-based mesoscopic model such as DPD, the stochas-
tic interaction is represented as a force between the particles.
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Clearly this interaction must have a radial dependence �typi-
cally with short range�. A useful observable for estimating
the stochastic interaction must therefore be able to resolve
the radial dependence. In this paper we suggest the use of the
force covariance function as a candidate for such an observ-
able and use DPD as a test case for the method.

II. DISSIPATIVE PARTICLE DYNAMICS

DPD was introduced in 1992 by �4� as a simulation tech-
nique for hydrodynamic phenomena. The method has re-
ceived much theoretical attention �12–16�, which provides
support for this kind of model and has been established as a
standard method for mesoscopic simulation. Among other
things DPD has been used to study complex fluids �7�, spon-
taneous self-assembly of amphiphilic molecules into bilay-
ered membranes �17�, vesicles �18,19�, and hydrodynamics
�20�. In its standard form, DPD is a particle model with
pairwise interactions, quite similar to MD, but with a dissi-
pative and stochastic contribution to the interactions between
the particles.

In its simplest form, the equations of motion for a DPD
model, with mesoscopic particles positioned at ri, and with
velocities vi and momenta pi, can be written as a system of
Langevin equations

ṙi = vi,

ṗi = �
j�i

�Fij
C + Fij

D + Fij
S� , �1�

where Fij
C, Fij

D, and Fij
S are the conservative, dissipative, and

stochastic forces between particles i and j. Both the conser-
vative and nonconservative interactions in DPD are modeled
by central forces obeying Newton’s third law, ensuring that
�angular� momentum is conserved �4�. The dissipative and
stochastic forces are

Fij
D = − �D�rij�eij · �vi − v j�eij , �2�

Fij
S = �S�rij��ijeij , �3�

where rij is the distance between particles i and j, and eij is
the unit vector pointing from j to i. The scalar functions
�D�rij� and �S�rij� describe friction and noise, respectively.
�ij is interpreted as a symmetric Gaussian white noise term
with mean zero and covariance,

��ij�t��i�j��t��� = ��ii�� j j� + �ij�� ji����t − t�� , �4�

where �ij and ��t� are the Kronecker and Dirac delta func-
tions. Assuming that the equilibrium distribution of a DPD
system is given by the canonical ensemble, the fluctuation-
dissipation theorem leads to a relation between the dissipa-
tive and stochastic parts �12�:

�D�r� = �2kBT�−1��S�r��2. �5�

For simplicity, we drop the superscript and write ��r�
��S�r�. Equations �1�–�5� together establish the general
form of the DPD dynamics. Both the conservative force Fij

C,

or equivalently the corresponding scalar potential, and the
scalar function ��r� depend on the particular system of in-
terest and need to be determined to obtain the correct DPD
model. In practice, this is the difficult part of DPD and also
the rationale behind the heuristic approach in deciding the
interactions. As an example, the common practice for fluid-
like systems is to apply linear functions with a cutoff radius
rc:

Fij
C = �1 − rij/rc�aij�ijeij = FC�rij�eij , �6�

��rij� = �1 − rij/rc���ij , �7�

where aij is the strength of the conservative force between
particles i and j, � is the amplitude of the noise, and �ij is 1
for rij �rc and 0 elsewhere.

Despite its popularity and theoretical support, it is unclear
how DPD should be interpreted as a coarse-grained model
�21�. One point of view, and the one we will elaborate on in
this paper, is to consider DPD as a systematic coarse-
graining of an underlying atomistic system. If the DPD
method could be shown to have a firm microscopic founda-
tion, that would greatly impact our ability to couple DPD to
actual physical systems. Several authors—e.g., �22–25�—
have established bottom-up connections between the micro-
scale and mesoscale and obtained mesoscopic dynamics re-
sembling DPD. The resulting methods differ from DPD as
they incorporate the geometry of the system in the equations,
implying forces that are not central or pairwise, while DPD
is a model with only pairwise interactions. It is clear that the
validity of DPD as a coarse-grained model, or how well DPD
represents an underlying microscopic system, has not been
fully resolved.

To obtain a well-defined bottom-up scheme, the dynamics
of the coarse-grained DPD particles must be defined through
a projection of the microscopic trajectories. The problem is
to find a closed representation of the system at the coarse-
grained level—i.e., to determine all interactions in the DPD
model. In this paper we investigate a method of estimating
the DPD interactions using measurements on the coarse-
grained level of a simulation. By applying the method to a
typically assumed projection of a microscopic system, we
clarify some important aspects of DPD as a systematically
coarse-grained model.

The DPD technique has its theoretical foundations in
Mori-Zwanzig theory on projection operators �26–29�. In
short, the theory states that given a microscale dynamics, a
lower-dimensional representation can be formally attained
through a projection of the phase space, where fast degrees
of freedom are treated as Markovian �white� noise �26�. This
framework can be applied to MD �30,31�. Naturally, how
faithfully the coarse-grained model will represent the under-
lying dynamics depends on the choice of projection. The
DPD method assumes a projection resulting in a mesoscopic
model characterized as a particle-based Langevin dynamics
with pairwise and negated central forces. The internal de-
grees of freedom in the mesoscopic particles give rise to
dissipation and noise, which is captured by nonconservative
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pairwise interactions. As a consequence, sufficiently close to
equilibrium, one obtains the classical result of the asymptotic
t−d/2 decay of the velocity autocorrelation �d is the dimen-
sionality of the system� �32�. In addition, the interactions
give rise to hydrodynamic modes in the fluid �32,33�, which
lead to the Navier-Stokes equations on the macroscopic level
�34�.

III. ESTIMATING THE EFFECTIVE FORCES

Given the DPD ansatz for the effective equations of mo-
tion, the question is, how does one find the conservative and
dissipative forces FC�r� and ��r�? In this section we present
the theoretical motivations for our method and apply it to
DPD simulations to test the accuracy of the method on a case
where we know the ansatz to be true. In Sec. IV we apply the
method to a coarse-graining of a system of particles interact-
ing via the Lennard-Jones potential in order to see how the
method fares on a classical MD system.

A. Conservative force term

The original motivation �7� for a repulsive conservative
force was a measurement of the effective potential for the
interaction between particles in a Lennard-Jones fluid �8�.
More generally applicable methods for estimating the con-
servative interactions are based on the radial distribution
function �RDF� in thermal equilibrium �35–40�. In these re-
ports, the estimate of the conservative force is obtained using
a result by �9�, stating that the difference between two pair-
wise potentials that give rise to the same RDF must be a
constant gauge shift, and hence of no physical significance.
The importance of this theorem lies in the one-to-one corre-
spondence between potential and RDF.

The conservative interactions are determined by the RDF
alone, which in turn is determined by the thermal equilib-
rium of the system. As long as the fluctuation-dissipation
theorem holds, the thermal equilibrium is independent of the
specific form of the dissipative and random interactions �12�,
and it follows that we can estimate the conservative forces
from a given RDF independently of the stochastic forces.
Here we use the inverse Monte Carlo method of Lyubartsev
and Laaksonen �41�, which starts from a Boltzmann ansatz
of the potential and then, through iteration, finds a potential
giving rise to the desired RDF. In what follows we briefly
describe the method, following �41�.

The connection between the RDF and the potential can be
found from the Hamiltonian of the system. Consider a sys-
tem of particles with pairwise interactions. It can be dis-
cretized as

H = �
�

	�S�, �8�

which corresponds to using a stepwise constant potential 	�.
S� denotes the number of particle pairs separated by a dis-
tance in the range from r� to r�+1, where r0=0, r1=dr, and
r�=� ·dr. The average of S� is directly connected to the RDF
g�r� by the relation

�S��
N�N − 1�/2

=
V�

L3 g�r� , �9�

where N is the number of particles, L3 the volume of the
simulation box, and V� the volume of the spherical shell
between radii r� and r�+1. Using a Monte Carlo �MC� ap-
proach, the system may be simulated with a start potential
	�

�0�. It is common practice to choose this to be the potential
of mean force,

	�
�0� = − kBT ln g�r�� . �10�

The correspondence between potential and RDF is an equi-
librium result and hence only valid for fixed temperatures
and densities. These quantities must therefore be the same in
the MC simulation as they were in the original simulation
from which the RDF was obtained.

Simulating with the trial potential 	�
�0� produces an �S�

�0��
which may differ from the correct value S�

� . The difference

�S���0�= �S���0�−S�

� is used to find a new trial potential by
solving for 
	 in the linear equation system,


�S�� = �
�

��S��
�	�


	�, �11�

with
��S��

�	�
given by �41�

��S��
�	�

= −
�S�S�� − �S���S��

kBT
. �12�

The next guess for potential is then 	�1�=	�0�−
	. This
procedure is repeated until 	 has converged to a potential
that reproduces the original RDF.

The potential of the mean force is usually a good first
approximation to the final potential, and convergence to a
unique potential normally takes less than ten updates in the
Monte Carlo simulations. This is especially true for the soft
coarse-grained potentials we get from considering effective
interactions between clusters of particles. For instances that
nevertheless require special care, problems with convergence
for the potential over successive MC simulations can gener-
ally be overcome by moving only a fraction in the direction
specified by Eq. �11�.

B. Dissipative force term

Assuming that the DPD ansatz is valid, the functional
form of the dissipative term �and through the fluctuation dis-
sipation theorem, Eq. �5�, the stochastic term� can be isolated
through a Kramer-Moyal expansion �42� of Eq. �1�:
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− ��pi · �p j�/�t = ��2�rij�� − �
k�i,l�j

�Fik
C · F jl

C��t − �
k�i,l�j

��2�rik��2�rjl��eik · vik��e jl · v jl��eik · e jl��
�2kBT�2 �t

+ �
k�i,l�j

��2�rik��eik · vik��eik · F jl
C��

2kBT
�t + �

k�i,l�j

��2�rjl��e jl · v jl��e jl · Fik
C��

2kBT
�t + O��t2� , �13�

where �pi�t�=pi�t+�t�−pi�t�. All averages in Eq. �13� have
the condition that the distance rij between particles i and j
must equal r. This equation provides a relationship between
the functional form of the stochastic and dissipative interac-
tions, ��r�, and the force covariance �F defined as

�F � − ��pi · �p j�/�t . �14�

In the DPD simulations we can take �t small enough that
only the leading term of Eq. �13� is significant. If the micro-
scopic dynamics is deterministic, as in most MD, there gen-
erally exists a time scale below which the forces are smooth
functions of time �this is the time scale on which the MD can
be integrated�. On this time scale, the projected dynamics is
also smooth �if the projection is smooth�, but not autono-
mous. It follows that for small �t the force covariance �F is
proportional to �t, corresponding to ��r�=0 in Eq. �13�.

In fluids, the magnitude of �F will typically increase with
increasing �t, because on relatively short time scales the par-
ticles of the fluids oscillate in a cage formed by their closest
neighbors �the Franck-Rabinowitch effect�. We consider
these rapid fluctuations to correspond to fast degrees of free-
dom in the system. To get an idea of the time scales in-
volved, consider water particles in a fluid at normal pressure
and room temperature. The particles’ distance to their closest
neighbors oscillates around the first peak in the RDF at ap-
proximately 0.28 nm. The half-width of the peak, approxi-
mately 0.05 nm, gives an indication of how far the molecule
travels before experiencing strong repulsive forces from
other particles. We estimate the typical velocity as the root-
mean-square �rms� velocity

vrms = 	�v2� = 	3kBT/m . �15�

At room temperature �25°C�, the rms velocity is approxi-
mately 640 m/s. One may argue that the orientations of the
particle velocities are essentially random, so that the rms
difference in velocity is vrms

	2 and that they collide at half
the half-width. The time to travel this distance at the typical
velocity is then approximately 0.03 ps, and we take this as a
rough approximation to the time scale at which the fast dy-
namics occur. It is only at time scales significantly larger
than this time scale that we can expect to approximate the
fast degrees of freedom with a spatially structured but Mar-
kovian noise as in the DPD ansatz. On this time scale, the
fluid approaches a local thermal equilibrium on the length
scale of the coarse-grained particles, determined by the local
concentration, local average velocity, and kinetic energy
�32�.

As a consequence, it is generally not possible to take the
limit of �t→0 in the numerically estimated �F to find ��r�.

Rather, we will assume that there exists a time interval where
the fast degrees of freedom can be approximated by noise
and where �F is an approximately linear function of time.
Given two values of �t in this interval, �t1 and �t2, we can
use Richardson extrapolation to eliminate the �t term in Eq.
�13� to obtain an O��t2� estimate for �2�r�:


�2�rij�
�t0
�

�t1

�t2


��pi · �p j�
�t2

�t2 − �t1
−

�t2

�t1


��pi · �p j�
�t1

�t2 − �t1
.

�16�

An alternative approach is to do a linear fit with respect to �t
in this region, for each value of r, and from the best fit take
the intersection with the line �t=0.

C. Recreating the effective interactions of DPD simulations

At this point we have established the principles behind
our method. An important consistency check is to apply the
method to standard DPD simulations, where the dynamics is
truly Langevinian. This was done by performing DPD simu-
lations with different functional forms of both Fij

C�r� and
��r�. Using standard DPD units, the simulation region was a
periodic cubic box with side length L=8.7359, with 3 par-
ticles per volume unit, giving a total of 2000 particles. From
the simulations, the RDF and �F were calculated for 100 r
values in the range 0–1.75, after which the RDF had con-
verged to 1.0. The time-step size used in the simulations was

0 0.2 0.4 0.6 0.8 1 1.2
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r

ω
2
(r

)
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B

C

FIG. 1. The plots show three different functional forms of �2�r�.
The symbols �, �, and � show the values found by our method:
measuring �F of a DPD simulation. The exact functional forms used
in the simulations are plotted as solid lines. All units are standard
DPD units. The conservative and dissipative forces are �for
r� �0,1��: �a� FC�r�=10�1−r�, ��r�=5r�1−r�, �b� FC�r�=10�1
−r�, ��r�=2�1−r�, and �c� FC�r�=10r�1−r�, ��r�=3�1−r�. For r
1, both functional forms are zero.
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small ��t=10−3� compared to a normal DPD simulation. The
reason for this was to approach the limit of small �t, so that
the terms proportional to �t could be ignored in Eq. �13�;
�2�r� is then given simply by �F.

In all cases the method accurately recreated the DPD in-
teractions used in the simulations. Figure 1 shows the results
of recreating �2�r� for three different functional forms. The
conservative potential was also varied �see figure caption for
details�, and plots of recreated potentials from these simula-
tions are shown in Fig. 2.

An example of the situation where we cannot measure �F
in the limit �t→0 is shown in Fig. 3. Here two measure-
ments of �F from a DPD simulation using time steps of dif-
ferent sizes ��t1=0.025 and �t2=0.05� deviate clearly from
�2�r�. The resulting estimate of �2�r�, obtained by Richard-
son extrapolation of �F measurements, falls close on the
original curve. It should be noted that �F measurements are
obtained from the same simulation �with time step �t
=0.005�, as an increase in the DPD time step would alter the

dynamics of the system. For a projected dynamics this is not
a problem, as it evolves on the microscopic time scale. In
Fig. 4 measurements of �F from the same simulation are
plotted against the size of the time difference between mea-
surements, �t. As predicted by Eq. �13� the system exhibits a
linear behavior for small values of �t �in this case �t�0.05�.
Note, however, that how far the linear region extends varies
significantly with the value of r.

IV. COARSE-GRAINING OF A LENNARD-JONES FLUID

We now apply the method to a coarse-grained molecular
system. Because of its simple form and because it is so well
understood, we examine the case of a coarse-grained two-
dimensional Lennard-Jones �LJ� fluid. This is a single-
species fluid, where the particles interact according to the
standard pairwise potential

V�r� = 4���r/�LJ�−12 − �r/�LJ�−6� . �17�

The parameters are chosen to correspond to bulk water at
room pressure and temperature: the energy �=6.739 meV,
the interaction length �LJ=0.31655 nm, and the mass mLJ
=2.99�10−26 kg.

In DPD, the particles are often understood to be a collec-
tion of underlying particles, with properties such as mass and
momentum defined from these. According to this view, we
follow �22�, where the coarse-grained dynamics is expressed
in terms of a set of N mesoscopic particles. Each particle has
a position Rk, a velocity Uk, and a mass Mk. The instanta-
neous momentum of mesoscopic particle k is defined as the
sum of the momenta of the microscopic particles for which k
is the nearest mesoscopic particle, and the mass of the par-
ticle is defined as the total mass of these underlying particles:

Mk = �
i=1

n

�k�ri�mi,
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FIG. 2. The conservative potentials 	�r���r
�dr�FC�r�� from

three DPD simulations have been recreated from RDF data. Cases
�a� and �b� correspond to a linear DPD-force �i.e., quadratic poten-
tial� with different random force parts. For case �c�, a quadratic
conservative force was used. For details, see caption of Fig. 1. In all
three cases, the potential was exactly recreated up to statistical
accuracy.
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FIG. 3. The plot shows two measurements of �F obtained from
a DPD simulation using time steps of different size ��t1=0.025 ���
and �t2=0.05 ����. The resulting estimate of �2�r�, obtained by
Richardson extrapolation of �F measurements, is shown as open
squares ���. The solid line shows the exact form of �2�r�= �3�1
−r��2 used in the simulation. The conservative force used was
FC�r�=10r�1−r�.
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FIG. 4. The force covariance �F measured in DPD simulation
plotted as a function of �t for different values of r �solid lines�. The
simulation setup is the same as in Fig. 3. It is clearly visible that �F

has a linear region for small �t �marked by dotted vertical line�, as
expected from Eq. �13�. The dashed lines are linear functions with
slopes given by the derivatives of �F close to �t=0.
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Pk = �
i=1

n

�k�ri�mivi,

Uk = Ṙk = Pk/Mk. �18�

Here n is the total number of microscopic particles, and mi,
ri, and vi represent masses, positions, and velocities, respec-
tively, of the microscopic particles. �k�ri� is 1 if mesoscopic
particle k is closer to microscopic particle i than any other
mesoscopic particle is and 0 otherwise.

Though we use Eqs. �18� to find the motion of the meso-
scopic particles, it is nevertheless illuminating to see how the
effective forces acting on the mesoscopic particles are related
to the forces acting on the microscopic particles. Formally,
we calculate the time derivative of the momentum of the
mesoscopic particle k in Eq. �18�. Between each passage of a
microscopic particle from one mesoscopic particle to the
next, �k�ri� is constant �either 0 or 1�. During these time
intervals, the effective force acting on the mesoscopic par-
ticle is the sum of the forces acting on the microscopic par-
ticles closest to k:

MkU̇k = �
i=1

n

�k�ri�fi. �19�

Suppose microscopic particle i leaves mesoscopic particle k.
When this happens, the mesoscopic particle experiences an
impulse

I = 
MkUk = − mivi, �20�

so that the velocity of mesoscopic particle k changes instan-
taneously from Uk to

Uk� =
1

Mk − mi
�MkUk − mivi� . �21�

The receiving mesoscopic particle is subject to the opposite
impulse −I �formally, it is possible to express the force in
terms of Dirac’s � function�.

Finally, a word of caution: It might seem natural to use
Eq. �19� alone to define the motion of the mesoscopic par-
ticles; however, in this dynamics the total momentum in the
mesoscopic system changes when a microscopic particle
moves from one mesoscopic particle to another.

A. Estimated forces

The conservative interaction was determined from the
RDF of the mesoscopic particles by the inverse MC method
discussed earlier. The RDF was measured in LJ simulations
with 1600 particles in a simulation box with side length
12.48 nm, temperature 333 K, and periodic boundaries. In
the coarse-grained description, 160 particles were used, re-
sulting in an average of 10 microscopic particles per mesos-
copic particle. Figure 5 shows the potential compared with
both the LJ potential �17� and the standard DPD potential
�6�. The retrieved potential confirms the main characteristics
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FIG. 5. �A� Lennard-Jones potential used to simulate the micro-
scopic particles. �B� The effective potential for the coarse-grained
system, obtained using the inverse MC method. �C� The standard
quadratic DPD potential, scaled to the same magnitude as the esti-
mated potential. The main characteristics of DPD—soft-core repul-
sion and finite support—are confirmed by the retrieved potential.
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FIG. 6. The force covariance �F as a function of �t �symbols�
for three values of r �shown by each curve�. �F is approximately
linear for large enough �t �to the right of the dashed line�. For each
value of r, the extrapolation of this region �indicated by solid lines�
to �t=0 determines the values of �2�r�; cf. Eq. �13�. Inset: �F as a
function of r for �t=0.1 ps �top� and 0.15 ps, 0.2 ps, and 0.25 ps
�bottom�. It is clear from this figure that the terms proportional to �t
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FIG. 7. The plotted circles show the estimate of �2�r�, calcu-
lated from the force covariance �F using Richardson extrapolation;
cf. Fig. 6. The solid line is �2�r�, using the DPD form in Eq. �7�,
with the same cutoff distance as for the conservative potential in
Fig. 5. The estimated stochastic interaction differs significantly
from the function commonly used in DPD studies.
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of the standard DPD potential—i.e., soft-core repulsion and
finite support.

In Fig. 6 we show �F for the Lennard-Jones system as a
function of �t for different values of r �the inset shows �F as
a function of r for different values of �t�. For small �t, �F is
increasing up to a maximum. We find a range starting at �t
=0.1 ps where �F is approximately linear. In principle, �F is
also linear for very small values of �t, but since we know
that the fluctuations we want to approximate with Markovian
noise occurs on time scales �0.03 ps �cf. Sec. III B�, we
reject this region. Hence, the linear region in the figure
should match the linear region of Eq. �13�. An extrapolation
using data from the linear region gives the shape of �2�r�
shown in Fig. 7. For comparison we have also included the
standard shape of �2�r�, which can be derived from Eq. �7�,
with the magnitude scaled to fit the obtained �2�r� �solid
line�. We note that the dissipative force derived from the
mesoscopic particle motion is significantly broader than the
standard shape. The conservative force is increasing only
gradually as a pair of mesoscopic particles come within the
interaction distance �approximately 1.5 nm�; the dissipative
force grows much more rapidly.

B. Consistency check

To test if the projected LJ system can be represented by
pairwise Langevinian dynamics, we perform a DPD simula-
tion using the estimated functional forms of the conservative
and dissipative forces, as shown in Figs. 5 and 7. Setting up
the DPD simulation so as to correspond to the projected LJ
dynamics, we obtained measurements of �F for varying �t. In
Fig. 8 the results �symbols� for a selection of r values are
plotted together with the corresponding measurements from
the LJ projection �solid lines� and the Richardson extrapola-
tion of these �dashed lines�. The linear region of �F for the
DPD dynamics lies between �t=0 and �t�0.05 ps. As

pointed out in Sec. III B, this is in the region of the fast
dynamics for the underlying system. Clearly, the linear re-
gions for �F in the DPD system and in the projected
Lennard-Jones system do not coincide and therefore we can-
not confirm that the projection can be formulated in terms of
DPD.

As is seen in Sec. III B, the method we have developed
works for any system that obeys the DPD ansatz. More
strictly, it works for any system that evolves on a time scale
where all terms of order O��t2� can be neglected in Eq. �13�.
That allows ��r� to be estimated either directly from �F �if
also first-order terms of �t are negligible� or through Rich-
ardson extrapolation of �F for different values of �t. If we
only have data available for the system on a longer time
scale, there may not be a region where �F is approximately
linear. In this case it is not possible to use the linearization
procedure to extract the dissipative force.

An important remark is that, in general, it cannot be con-
cluded from measurements of �F alone if the dynamics is
Markovian or follows the DPD ansatz; a cross-check with a
DPD simulation is necessary. In the case of the projected LJ
dynamics, it was reasonable to assume that the linear region
�see Fig. 6� could be interpreted as the right time scale to
consider for extracting the functional forms. However, �F
from the DPD simulation turned out to have its linear region
on a much shorter time scale than assumed for the projected
dynamics.

In the light of this result, there are two explanations for
the observed deviations from the DPD ansatz, which differ
with respect to whether the DPD ansatz is correct or not. If
we first assume that the projected system follows the DPD
ansatz, our guess of a linear region is not correct, and it
follows that higher-order terms of �t will affect the value of
�F, rendering our method inapplicable for this case. The so-
lution to this problem calls for more sophisticated methods to
estimate ��r� from �F. The second possibility is that the
projection does not produce a dynamics that follows the
DPD ansatz. This could either simply be a result of our
choice of projection, or it could point to deeper problems
with constructing a coarse-graining scheme that leads to the
DPD model.

Flekkøy and co-workers �22–24� have used the same type
of projection as presented in this paper �cf. Eq. �18��, but
rather than considering the coarse-grained entities as spheri-
cal particles, they consider them as cells on a Voronoi lattice.
Within each cell, the fluid is assumed to correspond to an
ideal fluid at a given pressure, temperature, and velocity.
Because of this, the system is similar in spirit to the Lattice-
Boltzmann coarse-graining, but with dynamic cells. An ad-
vantage of this method is that the dissipative part of the
evolution equations can be derived theoretically �24�. How-
ever, this method involves keeping track of, and updating,
the Voronoi lattice at each time step of the simulation, ren-
dering this technique much slower than standard DPD. As
the construction of the Voronoi lattice depends explicitly on
all particle positions in the simulation, it also introduces a
need for higher-order interactions than the simple pairwise
central forces normally associated with DPD. If it proves
impossible to find a projection giving rise to DPD dynamics
on the coarse-grained level �which is a question that calls for
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FIG. 8. The plot shows measurements of the force covariance �F

plotted as a function of �t for both the LJ projection �solid lines�
and a DPD simulation �symbols� using the estimated functional
forms. Also plotted is the Richardson extrapolation of the LJ pro-
jection �dashed lines�. The curves are plotted for three values of r
�same as in Fig. 6�. The linear region of �F for the DPD dynamics
lies between �t=0 and �t=0.05 ps, while the linear region of the
projected dynamics is in the range from �t=0.1 to �t=0.25 ps. �F

for the two systems do not have a coinciding linear region �for each
value of r�.
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further investigation�, this alternative approach might still
provide a reasonable path to take for performing reliable me-
soscopic simulations.

V. CHOICE OF PROJECTION

Although the projection used in this study, Eqs. �18�,
seems like a natural choice for DPD, it is a problem that the
positions of the coarse-grained particles only weakly reflect
the positions of the underlying particles. As is shown in Fig.
9, the number of microscopic particles per coarse-grained
particle �i.e., the mass of the coarse-grained particle� exhibits
large fluctuations, in sharp contrast to the standard DPD
model where the masses of all particles are assumed to be
equal and constant in time.

One way to make the coarse-grained particles more
closely reflect the density variations in the underlying system

of microscopic particles is to change the projection to incor-
porate movement of coarse-grained particles toward regions
of higher particle concentrations. This can be achieved by
using, for instance, the standard k-means clustering method
�43� �or any other position-based clustering algorithm� to
calculate the positions of the coarse-grained particles given
the positions of the underlying particles. This results in a
model where the coarse-grained particles can be seen as clus-
ters of underlying particles, with each cluster center repre-
senting a local concentration peak of microscopic particles.
An implementation has been made using this projection, and
the results reveal some new difficulties not easily foreseen in
advance. With this type of projection, the cluster centers
move in a potential landscape of the kind depicted in Fig. 10
for a one-dimensional system, where each local minimum of
the curve represents a possible cluster center position. The
simulation was made for illustrative purposes, with a single
cluster center in a one-dimensional box with N=100 par-
ticles and with periodic boundary conditions. The curve rep-
resents the sum-of-squares distance from all the particles to
the cluster center—i.e.,

V = �
i=1

N

min�
c − xi
2, 
L − c + xi
2� , �22�

where the minimum of the distance between the cluster and
all periodically displaced images of particle i is used.

By differentiating Eq. �22� with respect to the cluster cen-
ter position c, it is easily shown that a minimum in the sum-
of-squares function represents a local average of the posi-
tions of the microscopic particles belonging to the cluster.
This information is just what the k-mean clustering algorithm
uses to calculate the cluster center positions. The fact that the
example in Fig. 10 contains only one cluster to which all the
particles belong does not change the qualitative outcome that
several local minima exist in the potential landscape. The
result of this is inevitably that the cluster center positions,
represented by a given minimum in the potential landscape,
will move with that local minimum until it disappears, which
happens frequently in the course of the simulation—for in-
stance, by the merging of two originally separated minima.
At this point, the cluster center will jump to the adjacent
minima, and in doing so it affects the neighboring cluster
centers, resulting in discontinuous movement of the coarse-
grained particles. As discontinuous particle movement on the
coarse-grained level, due only to strictly local interactions on
the microscopic level, is highly unsatisfactory, this type of
position-based projections also leave much to be desired.

VI. SUMMARY

In this paper we have developed a method for estimating
the forces between particles in a system that evolves accord-
ing to the DPD ansatz—i.e., Langevinian dynamics with
pairwise central forces. The method works well for estimat-
ing both conservative and dissipative forces �with the sto-
chastic force given by the dissipative through a fluctuation-
dissipation theorem� and should work on any system that
follows the DPD ansatz, as long as the time scale is small
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FIG. 9. Size distribution of mesoscopic particle masses, mea-
sured in units of microscopic particle masses. The data were ob-
tained from a simulation using 1600 microscopic and 160 mesos-
copic particles, giving an average mesoscopic particle size of 10.
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FIG. 10. The figure illustrates how the k-means clustering algo-
rithm works. A minimum in the potential landscape corresponding
to a local minimum in the sum of squares function �22� is found
�indicated by vertical line�. The small dots represent particle posi-
tions xi in Eq. �22�, and V�c� is the sum-of-squares distance as a
function of cluster center position. This example is made for illus-
trative purposes and therefore contains only a single cluster center
to which all the particles belong. As the particles move, V�c�
changes, with the effect that local minima are continuously created
and destroyed. This process results in discontinuous trajectories for
the cluster center positions.
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enough to let ��r� be estimated from the force covariance �F.
When applied to a projected dynamics of a Lennard-Jones
system, we cannot conclude that the projection results in a
DPD-like dynamics. The result points toward two possibili-
ties: Either the projected dynamics is DPD-like, but outside
the reach of our method, or in the worst case, there might be
problems considering DPD as the result of a systematic
coarse-graining method.

A natural extension of the work presented in this paper is
to examine systems where artifacts due to fluctuating mass
and identity problems are not encountered, such as the fre-
quently used united-atoms approach. A simple example
would be to coarse-grain water by letting the coarse-grained
particle be the whole water molecule. Some work in this
direction has already been made by �44�. Another direction is
to develop a more sophisticated method for estimating ��r�
from �F.

As we suspect that the linear ansatz for �F is too simple,
one might be tempted to simply use polynomials of higher
degree in �t and do a regression for the coefficient for each
value of r separately, based on the region where we think the
DPD theory is valid. Since �F is close to linear in this region,
however, the result of extrapolating the resulting function to
find the intersection with the �t=0 axis may be rather sensi-

tive to the precise choice of region in �t and to noise in the
measurement of �F �from the finite number of samples�.

Rather, one may consider going in the other direction: for
a given choice of ��r� �and keeping the conservative force
fixed� we measure �F as a function of �t and r and calculate
a distance between �F from the DPD simulation and �F from
the microscopic simulations. We may then use some optimi-
zation procedure that does not require explicit calculation of
derivatives—e.g., the classic downhill simplex method or
Monte Carlo methods—to obtain better estimates for ��r�
�see, e.g., �45� for a review of different suitable optimization
methods�.
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